Nobel-quimica-2020

Charpentier & Doudna Nobel de Química 2020

La francesa Emmanuelle Charpentier y la estadounidense Jennifer Doudna desarrollaron “un método para la edición de genes” que ayuda a combatir el cáncer. Son la sexta y séptima mujer que ganan el premio desde 1901.

Charpentier y Doudna - Nobel de química del 2020. INvetaron la edicicón genética CRISPR/CAS9
Nobel de Química del 2020 para Emmanuelle Charpentier   
11 de diciembre de 1968, Juvisy-sur-Orge, Francia
Estudió en la Universidad Pierre y Marie Curie (1995)
y Jennifer A. Doudna.
19 de febrero de 1964, Washington D. C., Estados Unidos
Estudió en la Escuela de Medicina Harvard (1989)

El Premio Nobel de Química galardonó (07.10.2020) a dos mujeres genetistas, la francesa Emmanuelle Charpentier y la estadounidense Jennifer Doudna, por sus investigaciones sobre las “tijeras moleculares“, capaces de modificar los genes humanos, un descubrimiento “revolucionario”.

El galardón quiere recompensar “el desarrollo de un método de edición de genes” que “contribuye a desarrollar nuevas terapias contra el cáncer y puede hacer realidad el sueño de curar enfermedades hereditarias”, subrayó el jurado en Estocolmo.

Charpentier, de 51 años, y Doudna, de 56, se convierten así en la sexta y séptima mujer que ganan un Nobel de Química desde 1901.

En junio de 2012, las dos genetistas y su equipo describieron en la revista Science una nueva herramienta con la que se podía simplificar el genoma. El mecanismo se llama Crispr/Cas9 y es conocido como “tijeras moleculares”.

Rafael Yuste

Proyecto Brain * Rafael Yuste

Este proyecto que empieza el 2013, es equivalente al proyecto del genoma humano.

El neurobiólogo español Rafael Yuste, investigador y catedrático de la Universidad de Columbia, detalla los orígenes, desarrollo y perspectivas futuras del proyecto BRAIN, del cual forma parte y que, financiado por el Congreso de los Estados Unidos, tiene como objetivo registrar la actividad del cerebro humano. Destaca de esta investigación que aúna ciencia y tecnología su aplicación para detectar las causas de numerosas enfermedades.

El Proyecto Cerebro Humano (HBP por sus siglas en inglés) es un proyecto medico-científico y tecnológico financiado por la Unión Europea y dirigido por Henry Makram, que tiene como fin reproducir tecnológicamente las características del cerebro humano, y de esta forma conseguir avances en el campo de la medicina y la neurociencia. Para que este proyecto pueda desarrollarse es necesaria la investigación en nuevas TIC, o tecnologías de supercomputación avanzadas que permitan asociar y utilizar la información integrada en modelos informáticos y simulaciones del cerebro que identifiquen patrones, principios organizativos y posibles carencias que puedan ser subsanadas con nuevos experimentos. A su vez para este fin, se han desarrollado distintas plataformas:

Plataforma Neuroinformática: reunirá datos y conocimiento de neurocientíficos de todo el mundo, poniéndolos a disposición de la comunidad científica.

Plataforma de Simulación del Cerebro: integrará esta información en modelos informáticos unificados, haciendo posible identificar los datos que faltan y permitiendo experimentos in silico, imposibles de realizar en el laboratorio.

Plataforma de Computación de Alto Rendimiento: suministrará la tecnología de supercomputación interactiva que los neurocientíficos necesitan para el modelado y simulación de datos.

Plataforma de Informática Médica: integrará datos clínicos de todo el mundo, aportando a los investigadores nuevas herramientas matemáticas para buscar las signaturas biológicas de las enfermedades.

Plataforma de Computación Neuromórfica: transformará los modelos del cerebro en una nueva clase de dispositivos “hardware” testando sus aplicaciones.

Plataforma de Neuro robótica: permitirá a los investigadores en neurociencia y en la industria experimentar con robots virtuales controlados por modelos cerebrales desarrollados en el proyecto.

Las claves educativas en la era de la inteligencia artificial

En este vídeo, el experto en inteligencia artificial Kai-Fu Lee analiza el impacto que las nuevas tecnologías tendrán en el mercado laboral y en la vida de las generaciones futuras. Lee explica, además, algunos conceptos básicos sobre IA y propone un cambio educativo que prepare a los niños de hoy para el futuro. “Ahora, lo importante en una empresa es el trabajo en equipo, la colaboración y la comunicación. Eso es lo que necesitamos enseñar”, sostiene.

Nobel de Química 2019 para los inventores de la batería de ion-litio

La  Real Academia de las Ciencias de Suecia ha concedido el Premio Nobel de Química de 2019 al estadounidense John B. Goodenough, al británico Stanley Whittingham y al japonés Akira Yoshino por desarrollar la batería de iones de litio.

Nobel de Química 2019

“Esta ligera, recargable y potente batería se utiliza en la actualidad en todas partes, desde los teléfonos móviles a los ordenadores portátiles y los vehículos eléctricos. También puede almacenar cantidades significativas de energía solar y eólica, haciendo posible una sociedad libre de combustibles fósiles”, menciona en un comunicado. Los tres ganadores se repartirán el premio, dotado con 825.000 euros, a partes iguales.

Las bases de la batería de iones de litio se sentaron durante la crisis del petróleo de la década de 1970, destaca la Real Academia. Stanley Whittingham, un investigador de la Universidad Estatal de Nueva York nacido en 1941, comenzó a trabajar en el desarrollo de métodos que pudieran conducir a tecnologías energéticas libres de combustibles fósiles. Sus investigaciones con materiales superconductores culminaron pronto en una batería de litio con un cátodo de disulfuro de titanio y un ánodo de litio metálico. “El resultado fue una batería que tenía un gran potencial, un poco más de dos voltios. Sin embargo, el litio metálico es reactivo y la batería era demasiado explosiva como para ser viable”, explica la institución sueca.

El problema lo tomó John Goodenough, un físico nacido en Jena (Alemania) en 1922, pero nacionalizado estadounidense. Goodenough, de la Universidad de Texas, predijo que el cátodo tendría un mayor potencial si estuviera hecho con un óxido metálico en lugar de un sulfuro metálico. Tras probar diversos materiales, en 1980 demostró que el óxido de cobalto con iones de litio intercalados producía hasta cuatro voltios. “Este fue un avance importante que conduciría a baterías mucho más potentes”, narra la Real Academia.

Introduciendo mejoras en el trabajo de Goodenough, Akira Yoshino (Suita, 1948), de la empresa japonesa Asahi Kasei, creó la primera batería de iones de litio viable comercialmente. “El resultado fue una batería ligera y resistente que podía cargarse cientos de veces antes de que su rendimiento se redujera. La ventaja de las baterías de iones de litio es que no se basan en reacciones químicas que descomponen los electrodos, sino en iones de litio que fluyen de un lado a otro entre el ánodo y el cátodo”, detalla la institución sueca. “Simplemente olfateé la dirección hacia la que se movían las tendencias. Se podría decir que tuve un buen olfato”, ha bromeado Yoshino

“Las baterías de iones de litio han revolucionado nuestras vidas desde que llegaron al mercado en 1991. Han sentado las bases de una sociedad inalámbrica, libre de combustibles fósiles, y son de gran beneficio para la humanidad”, aplaude el comunicado. El trabajo de Whittingham, Goodenough y Yoshino sirvió para cambiar el comportamiento de la humanidad, desde la manera de comunicarse a la forma de trabajar, escuchar música o transportarse.

Un año más, todos los premios Nobel de ciencias han sido para hombres. Desde 1901, solo cinco mujeres han ganado el Nobel de Química, el 2,7% de los 184 galardonados. Este año, sonaba en las quinielas la estadounidense Carolyn Bertozzi, de la Universidad de Stanford, por desarrollar técnicas para visualizar procesos en el interior de las células, una metodología conocida como química bioortogonal que ha permitido entender mejor enfermedades como el cáncer.

La apuestas de la sociedad científica internacional Sigma Xi también incluían a Jennifer Doudna, investigadora de la Universidad de California, en Berkeley, y madre de la revolucionaria técnica de edición genética CRISPR junto a la bioquímica francesa Emmanuelle Charpentier, ahora en el Instituto Max Planck en Berlín. Ambas se apoyaron en los pioneros trabajos del microbiólogo español Francis Mojica, cuyo laboratorio en la Universidad de Alicante descubrió en 2003 un sistema de tijeras moleculares que las bacterias utilizan para defenderse de los virus. Esas mismas tijeras sirven ahora para editar el genoma de cualquier ser vivo con rapidez, facilidad y de manera muy barata.

Max Hidalgo

Max Hidalgo (1990 – ) es un biólogo peruano con 16 años de experiencia en ictiología, hidrobiología, taxonomía de peces de aguas continentales, con línea de investigación relacionada en Conservación, Ecología, Monitoreo e Impacto Ambiental.

Es oriundo de Huancavelica. Desde pequeño, su madre lo incentivó a armar cosas y explorar el mundo con libertad. Max es egresado de la Universidad Nacional Mayor de San Marcos. Ahí estudió Ciencias Biológicas y posteriormente obtuvo una maestría en Biodiversidad y Gestión de Ecosistemas.

Actualmente es investigador permanente del Museo de Historia Natural UNMSM, docente de la Facultad de Ciencias Biológicas de la UNMSM e hidrobiólogo senior en AMEC Perú. Su más reciente trabajo es el proyecto Yawa, ganador del concurso mexicano internacional Una idea para cambiar la historia, patrocinado por History Channel.

Con este proyecto desea conseguir proveer de agua a través de una turbina eólica que la genera tras condensar el aire. Este proyecto está enfocado en ayudar a la gente que no adquiere agua de buena calidad, que muchas veces llega a sus hogares con presencia de microorganismos dañinos.

Este innovador peruano, a través de sus investigaciones, nos demuestra que “Siempre hay que buscar la manera más fácil de hacer las cosas. No esperar a tener algo, sino trabajar en base a lo que tenemos. Lo simple resulta siempre más grandioso.”

Frederick Sanger

Frederick Sanger (1918 – 2013) fue un bioquímico inglés a quien le otorgaron dos veces el Premio Nobel de Química. Sus investigaciones se centraron en las características de la insulina y la secuenciación del ADN.

Sanger estudió en la escuela Bryanston y posteriormente obtuvo el título de bachiller en Ciencias Naturales en el St. John’s College. Se inclinó a la bioquímica por la presencia de eminencias en el tema en su universidad. Obtuvo su doctorado en 1943 y luego trabajó como investigador del laboratorio de Bioquímica.

Sanger determinó la secuencia de los aminoácidos de la insulina en 1953. Al hacerlo, demostró que las proteínas tienen estructuras específicas. A través de un experimento, consiguió crear patrones característicos para las proteínas. Sanger llamo a estos patrones “huellas dactilares”. Como las huellas dactilares humanas, estos patrones se pueden emplear para identificar cada proteína. Reagrupó los pequeños fragmentos en secuencias para deducir la estructura completa de la insulina. Sanger concluyó que la proteína de la insulina tenía una secuencia precisa de aminoácidos. Este resultado le valió su primer Premio Nobel de química en 1958.

En 1975 desarrolló el innovador método de secuenciación de ADN, conocido también como método de Sanger. Dos años más tarde empleó esta técnica para secuenciar el genoma del bacteriófago F-X174, el primer organismo del que se secuenció totalmente el genoma. Realizó este trabajo manualmente, sin ayuda de ningún automatismo. Base fundamental para proyectos tan ambiciosos como el Proyecto Genoma Humano, y por este trabajo se le concedió su segundo Premio Nobel en 1980, que compartió con Walter Gilbert.

Frederick Sanger murió mientras dormía el 19 de noviembre de 2003.

Kip Thorne

Kip Stephen Thorne (1940 – ) es un físico teórico estadounidense, ganador del Premio Nobel de Física en 2017. Es conocido por sus numerosas contibuciones en el campo de la física gravitacional y la astrofísica.

Kip Thorne nació en Utah, Estados Unidos. Es hijo de dos profesores de la universidad de Utah y fue criado en un ambiente académico, por lo que dos de sus cuatro hermanos también son profesores. Thorne destacó en sus estudios desde temprana edad, llegando a convertirse en uno de los profesores más jóvenes de la historia del Instituto de Tecnología de California.

Su tesis doctoral se tituló “Geometrodynamics of Cylindrical Systems”. Se doctoró en la Universidad de Princeton en 1965. En 1991 le fue otrogada la cátedra “Profesor Feynman de Física Teórica”.

La investigación de Thorne se ha centrado principalmente en la astrofísica relativista y la física de gravitación, con énfasis en las ondas gravitatorias de los agujeros negros y la evolución estelar. Es conocido públicamente por su controvertida teoría de que los agujeros de gusano se pueden usar para viajar en el tiempo.

En junio de 2009 renunció a su cátedra Feynman (ahora es emérito) para desarrollar una carrera profesional como escritor y guionista cinematográfico. En su primer proyecto colaboró con el director Christopher Nolan, en la película Interstellar.

Thorne es considerado una de las pocas autoridades mundiales en ondas gravitatorias. En parte, su trabajo se ha ocupado de la predicción sobre ondas gravitatorias y sus ritmos temporales observables en la Tierra. Estos “ritmos” observables son de gran importancia para el experimento denominado LIGO (Laser Interferometer Gravitational Wave Observatory).

Ha prestado también apoyo teórico para el LIGO, incluyendo la identificación de fuentes de ondas gravitatorias en que LIGO debería centrarse, el diseño de los deflectores para el control de la luz dispersada en el haz de tubos de LIGO.

Thorne desarrolló sistemas innovadores de modulación de amplitud en cuadratura de osciladores armónicos, una técnica aplicable tanto en la detección de ondas gravitatorias como en la óptica cuántica (el Ligo utiliza en sus mediciones rayos láser). Debido a estas investigaciones, en 2017 le fue concedido, junto a Rainer Weiss y Barry C. Barish, el premio Nobel de física, «por sus contribuciones decisivas al detector LIGO y por la observación de ondas gravitatorias».

Dennis Gabor

Dennis Gabor (1900-1979) fue un innovador físico Húngaro que nació en Budapest y murió en Londres. Se le otorgó el premio Nobel de física en 1971 por la invención de los hologramas. Es principalmente conocido por esto pero también por inventar el filtro de Gabor y desarrollar investigaciones científicas respecto a la comunicación, televisión a color y a la óptica.

Su nombre de nacimiento fue Dénes Günszberg. Su familia era judía por parte de su padre y española por parte de su madre. De pequeño se inspiraba de Julio Verne y Thomas Edison. Su padre, al dirigir una compañía minera, lo motivó a aprender sobre la ingeniería y la física. A los 10 años de edad presentó su primera patente. Al cumplir los 18 fue enviado a asistir en la Primera Guerra mundial, no tardó en regresar para estudiar Ingeniería Mecánica en la Universidad de Tecnología y Tecnología de Budapest.

En 1920 emigra de Hungría a Berlín porque el gobierno Húngaro lo llamó para que realice otro servicio militar. Aparte, se encontraba en contra del nuevo gobierno. Una vez en Berlín se gradúa en Ingeniería Eléctrica y obtiene su doctorado en 1927. Inmediatamente después empieza a trabajar en el desarrollo de lámparas de alta presión. Tiene que dejar este puesto de trabajo en 1933 por la llegada de Hitler, al ser de ascendencia judía. Decidio mudarse a Inglaterra en donde su amigo Edward Allibone lo ayudó a conseguir trabajo en British Tohmson-Houston, una empresa de ingeniería eléctrica. Es ahí donde investiga rayos catódicos y tubos de descarga de gas. Durante la guerra, colaboro con los británicos en el desarrollo del radar.

Hasta 1947 realizó investigaciones en la holografía, la cual presentaría al público en ese año y le daría fama y el Nobel de física de 1971. También pudo mejorar la resolución de los microscopios electrónicos e inventar el láser, lo cual cambio para siempre la física óptica. Continuo con sus estudios en Imperial College London y realizo algunas investigaciones en Estados Unidos. Finalmente en 1979 murió por causas naturales a los 79 años.

Jack Kilby

Jack Kilby (1923 – 2005) fue un ingeniero eléctrico norteamericano. Fue parte escencial de la invención del microchip o circuito integrado. También inventó la calculadora de bolsillo y la impresora térmica.

Jack fue criado en Great Bend, Kansas. De joven fue aficionado a las radiocomunicaciones. Hizo servicio militar durante la Segunda Guerra Mundial, donde trabajó como técnico en la India. Luego volvió a Estados Unidos y atendió a la escuela gracias a una beca de veteranos.

Kilby se graduó como ingeniero eléctrico de la Universidad de Illinois en 1947. Tres años después, en la Universidad de Wisconsin, obtuvo su magíster. Se casó on Barbara Annegers en 1948 con quien tuvo 2 hijas.

Trabajó en Texas Instruments en 1958, donde fue capaz de diseñar un circuito integrado combinando elementos electrónicos previamente isolados para trabajar en conjunto en un ambiente miniatura conocido como microchip. También inventó la impresora térmica.

Utilizando su invento previo, Kilby también inventó la primera calculadora basada en circuitos integrados. En 1970 esta fue optimizada para el uso general y se convirtió en la calculadora de bolsillo.

Kilby ascendió hasta director de Texas Instruments. Se retiró en 1983 y comenzó proyectos independientes sobre investigacion en energía solar en la Universidad de Texas.

Kilby fue galardonado con el Premio Nobel de Física en el 2000 por sus inventos innovadores que provocaron una revolución en el mundo tecnológico y computacional. Marcó el inició de los dispositivos que se han vuelto parte escencial de nuestras vidas.

El 20 de junio de 2005 perdió la batalla contra el cáncer y murió a los 81 años de edad.

Thomas Morgan

Thomas Hunt Morgan (1866 – 1945) fue un genetista estadounidense. Estudió historia natural y zoología. Su trabajo científico se centró en las macromutaciones de la mosca de la fruta, Drosophila melanogaster.

Su juventud fue dura. Se graduó de la Universidad de Kentucky en 1886 y recibió el doctorado de la Universidad Johns Hopkins en 1890. Luego comenzó a trabajar en el desarrollo embrionario de la mosca de la fruta en la Universidad de Columbia, donde se interesó por el problema de la herencia.

En 1910 descubrió una mosca mutante de ojos blancos nacida entre individuos de ojos rojos. Al cruzar este macho con una hembra de ojos rojos, el progenitor presentó ojos rojos y llegó a la conclusión de que el carácter de “ojos blancos” era recesivo. De sus experimentos, concluyó que algunos caracteres se heredan ligados al sexo, que el gen responsable del carácter residía en el cromosoma X, y que probablemente otros genes también residían en cromosomas específicos.

Fue galardonado con el Premio Nobel de Fisiología y Medicina en 1933 por la demostración de que los cromosomas son portadores de los genes, lo que se conoce como la teoría cromosómica de Sutton y Boveri.

El legado innovador de Morgan a la genética es muy importante. Algunos de los estudiantes de Morgan en Columbia y CalTech ganaron sus propios Premios Nobel, como George Wells Beadle, Edward B. Lewis y Hermann Joseph Muller. En honor de Morgan, la Genetics Society of America concede anualmente la Medalla “Thomas Hunt Morgan” para premiar las contribuciones significativas a la ciencia de la Genética.

Morgan murió el 4 de diciembre de 1945 en Pasadena de un infarto agudo de miocardio.